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Abstract 

We examine a problem in nonlinear dynamics in which 
both regular and chaotic motions are possible. Thus we 
deal with some of the fundamental theoretical problem of 
accelerator physics, mathematics theory of dynamical sys- 
tems, and other fields of physics. The focus is on the ap- 
pearance of chaos in a beam distribution. A study of the 
problem is based on two observation: First, Using Lya- 
punov method and its extension we obtain solutions of par- 
tial differential equations [l, 21. Using this approach we 
discuss the problem of finding a solution of Vlasov-Poisson 
equation, i.e., some stationary solution where we consider 
magnetic field as some disturbance with a small parameter. 
Thus the solution of Vlasov equation yields an asymptotic 
series such that the solution of Vlasov-Poisson equation is 
the basis solution for one. The second observation is that 
physical chaos is weakly limit of, well known, the Landau 
bifurcation’s. This fact we have proved using ideas on the 
Nature of Turbulence [3]. 

1 INTRODUCTION 

The aim of this paper is to find the solution for Vlasov- 
Poisson (VP) equation in the attraction region of an integral 
manifold. As known VP is system which can be written as 
follows 

Where 

&f + va, f + E(t, X)&f = 0 (1) 

AU(t, z) = 47ryp(t, 2) (2) 

E(t, 2) := -&U(t,z); (3) 

p(t,2) := 
J 

f(t, 2, v)dv. (4) 

Here we have y = +l, f = f(t, 2, v) is the distribution 
of the particles in phase space depending upon the time 
t 2 0, the position z E R” and the velocity, U = U(t,s) 
is the Newtonian potential . The quantity n indicates 
the space dimension. If not stated otherwise, we assume 
n = 3. With the opposite sign of y , i.e. for y = -1, the 
VP system is used as a first 
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model to describe the evolution of equally charged 
particles (with repulsive forces) in plasma physics. 

As well known, this system is considered to be an ap- 
proximation to the more involved Vlasov-Maxwell system 
[ 11. Below we shall reduce the quasi linear equation (1,2) 
to a linear partial differential equation of first order. 

2 LANDAU BIFURCATION AND 
WEAKLY- CONVERGENCE 

Using the arguments in [4], we get 

f(t, 5, v) = fo(z, v)ewiwt. 

Thus, the function fa(z, v) satisfies equation 

(3 

&fo + &foE = iwfo (6) 

Let 

PO = J fo(z,v)de (7) 

then the coefficients of the equation be independent of the 
time t . A general solution f(t,z,v) may be introduced 
by a sum of the particular solutions such that the function 
f depends on the time by the multiplier of the type e-jut. 
Here the frequency w can’t be arbitrary. They be defined 
completely from the equation (6). The equation (6) is quasi 
linear equation. Using the well known approach, we re- 
duce it to a linear equation by the way of introducing some 
function: 

then 

w = -fo + fo(s,v) = 0, (8) 

Lw q dwzv + dw,E = aW,(iwfo) (9) 

The equation (9) is a linear equation. 
In the following, we transform (9) into a Fredhohn’s 

equation 

w = Rfo. 

Where R is some kernel operator, i.e. 

c I Ai I< co,& E a(R), 

(10) 

(11) 



here o(R) is spectrum of R (see [ 1],[4]). Now, by differen- 
tiating equation (10) with respect to the given VP system, 
we obtain 

fo = Lao (12) 

where R = LR, and p = -iw-‘. Suppose there exists 
a small bounded set of data (z, w) such that I& is a small 
operator: 

I p I< me8 I RN Ill &I II-' . (13) 

We assume that the measure of the domain RN increases 
with increasing number IV, and w + 0 . This case yields 
to some bifurcation sequence. One may be the divergent 
series or the convergent series. The term “the convergent” 
may have the various sense. 

Theorem: Under the assumption I fog I< 1 for all IV, 
there is an invariant measure TO such that hmN+m drjv z 
fON& = dTO . This measure be a stochastic measure on 
the manifold fc(z, V) = 1. Thus we have an ergodic mo- 
tion on this manifold. As opposed to first case, we have a 
wave motion. 

Consequently the Landau chaotization take place for se- 
ries bifurcation is not always true. 
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